구현 코드
- MNIST 다운 과정에서 문제 발생 시
import tensorflow as tf import random import numpy as np import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' from tensorflow.examples.tutorials.mnist import input_data # Check out https://www.tensorflow.org/get_started/mnist/beginners for # more information about the mnist dataset mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) nb_classes = 10 # MNIST data image of shape 28 * 28 = 784 X = tf.placeholder(tf.float32, [None, 784]) # 0 - 9 digits recognition = 10 classes Y = tf.placeholder(tf.float32, [None, nb_classes]) W = tf.Variable(tf.random_normal([784, nb_classes])) b = tf.Variable(tf.random_normal([nb_classes])) # Hypothesis (using softmax) hypothesis = tf.nn.softmax(tf.matmul(X, W) + b) cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(hypothesis), axis=1)) optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost) # Test model is_correct = tf.equal(tf.arg_max(hypothesis, 1), tf.arg_max(Y, 1)) # Calculate accuracy accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32)) # parameters training_epochs = 10 batch_size = 100 with tf.Session() as sess: # Initialize TensorFlow variables sess.run(tf.global_variables_initializer()) # Training cycle for epoch in range(training_epochs): avg_cost = 0 total_batch = int(mnist.train.num_examples / batch_size) for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) c, _ = sess.run([cost, optimizer], feed_dict={ X: batch_xs, Y: batch_ys}) avg_cost += c / total_batch print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost)) print("Learning finished") # Test the model using test sets print("Accuracy: ", accuracy.eval(session=sess, feed_dict={ X: mnist.test.images, Y: mnist.test.labels})) # Get one and predict r = random.randint(0, mnist.test.num_examples - 1) print("Label: ", sess.run(tf.argmax(mnist.test.labels[r:r + 1], 1))) print("Prediction: ", sess.run( tf.argmax(hypothesis, 1), feed_dict={X: mnist.test.images[r:r + 1]}))
실행 결과
'IT > 머신러닝' 카테고리의 다른 글
[section_11_lab] Class, tf.layers, Ensemble (MNIST 99.5%) (0) | 2018.06.01 |
---|---|
[section_11_lab] TensorFlow로 구현하자 (MNIST 99%) (0) | 2018.06.01 |
[section_12] RNN(Recurrent Neural Networks) (0) | 2018.06.01 |
[section_11] CNN(Convolutional Neural Networks) (0) | 2018.06.01 |
[section_9] ReLU and 초기값 정하기(1) (2006/2007 breakthrough) (0) | 2018.06.01 |