본문 바로가기
IT/머신러닝

[section_12_lab] Long Sequence RNN (by Stacked RNN + Softmax layer)

by 빨강자몽 2018. 6. 1.

문장을 입력하였을 때 자동적으로 학습하는 코딩하기(by Hyper parameter)

import tensorflow as tf
import random
import numpy as np
from tensorflow.contrib import rnn
import pprint
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

sample = " if you want you"
idx2char = list(set(sample))  # index -> char
char2idx = {c: i for i, c in enumerate(idx2char)}  # char -> idex

# hyper parameters
dic_size = len(char2idx)  # RNN input size (one hot size)
hidden_size = len(char2idx)  # RNN output size
num_classes = len(char2idx)  # final output size (RNN or softmax, etc.)
batch_size = 1  # one sample data, one batch
sequence_length = len(sample) - 1  # number of lstm rollings (unit #)
learning_rate = 0.1

sample_idx = [char2idx[c] for c in sample]  # char to index
x_data = [sample_idx[:-1]]  # X data sample (0 ~ n-1) hello: hell
y_data = [sample_idx[1:]]   # Y label sample (1 ~ n) hello: ello

X = tf.placeholder(tf.int32, [None, sequence_length])  # X data
Y = tf.placeholder(tf.int32, [None, sequence_length])  # Y label

x_one_hot = tf.one_hot(X, num_classes)  # one hot: 1 -> 0 1 0 0 0 0 0 0 0 0
cell = tf.contrib.rnn.BasicLSTMCell(
    num_units=hidden_size, state_is_tuple=True)
initial_state = cell.zero_state(batch_size, tf.float32)
outputs, _states = tf.nn.dynamic_rnn(
    cell, x_one_hot, initial_state=initial_state, dtype=tf.float32)

# FC layer
X_for_fc = tf.reshape(outputs, [-1, hidden_size])
outputs = tf.contrib.layers.fully_connected(X_for_fc, num_classes, activation_fn=None)

# reshape out for sequence_loss
outputs = tf.reshape(outputs, [batch_size, sequence_length, num_classes])

weights = tf.ones([batch_size, sequence_length])
sequence_loss = tf.contrib.seq2seq.sequence_loss(
    logits=outputs, targets=Y, weights=weights)
loss = tf.reduce_mean(sequence_loss)
train = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)

prediction = tf.argmax(outputs, axis=2)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(50):
        l, _ = sess.run([loss, train], feed_dict={X: x_data, Y: y_data})
        result = sess.run(prediction, feed_dict={X: x_data})

        # print char using dic
        result_str = [idx2char[c] for c in np.squeeze(result)]

        print(i, "loss:", l, "Prediction:", ''.join(result_str))

  • 그러나.... 더욱더 긴 글을 사용하여 학습을 시키게 되면 문제가 발생하게 된다!!!!

Stacked RNN + Softmax layer
  • 해결방법1 -> 이 모델의 경우 RNN을 한계층으로 쌓았지만 여러 계층으로 쌓는다.
  • 해결방법2 -> softmax를 사용하면 보다 좋은 결과를 얻을 수 있다.
                        (CNN에서와 같이 마지막에 softmax를 사용하면 더 좋은 결과를 얻을 수 있다.)
  • Data 입력부분은 그대로 쓰면된다.